intLocateVex( MGraph G, VertexType v )// 在图 G 的顶点数组中查找顶点 V,返回顶点的下标 { for ( int i = 0; i < G.vexnum; ++i ) if ( G.vexs[i] == v ) return i; return-1; }
boolCreateUDN( MGraph &G )//采用邻接矩阵表示法,构造无向网 G { int i, j, k; cout << "请输入总顶点数,总边数,以空格隔开:"; cin >> G.vexnum >> G.arcnum; cout << endl;
cout << "输入点的名称,如a" << endl;
for ( i = 0; i < G.vexnum; ++i ){ cout << "请输入第" << ( i + 1 ) << "个点的名称:"; cin >> G.vexs[i]; }
cout << endl;
for ( i = 0; i < G.vexnum; ++i ) for ( j = 0; j < G.vexnum; ++j ) G.arcs[i][j] = INFINITY;
cout << "输入边依附的顶点及权值,如 a b 5" << endl; for ( k = 0; k < G.arcnum; ++k ) { VertexType v1, v2; int w; cout << "请输入第" << ( k + 1 ) << "条边依附的顶点及权值:"; cin >> v1 >> v2 >> w; i = LocateVex ( G, v1 ); j = LocateVex ( G, v2 ); G.arcs[i][j] = w; G.arcs[j][i] = G.arcs[i][j]; } return OK; }
voidDisplay( MGraph G )//显示图 G 的邻接矩阵,即按行列输出二维数组 { for ( int i = 0; i < G.vexnum; ++i ) { for ( int j = 0; j < G.vexnum; ++j ) { if ( G.arcs[i][j] != 0x7fffffff ) cout <<setw(5)<< G.arcs[i][j]; else cout <<setw(5)<< "0"; } cout << endl; } }
intFirstAdjVex( MGraph G, int v )//求顶点 v 在图 G 中的第一个邻接点 { int i; for ( i = 0; i < G.vexnum; i++ ) { if ( G.arcs[v][i] && visited[i] == false ); return i; }
if ( i == G.vexnum ) return-1; }
intNextAdjVex( MGraph G, int v, int w )//求顶点 v 在图 G 中邻接点 w 的下一个邻接点 { int i; for ( i = w - 1; i < G.vexnum; i++ ) if ( G.arcs[v][i] && visited[i] == false ) return i; if ( i == G.vexnum ) return-1;
}
voidDFS( MGraph G, int v )//从 v 顶点出发对图 G 进行深度优先遍历的递归算法 { cout << G.vexs[v] << " "; visited[v] = 1; for ( int w = 1; w <= G.vexnum; w++ ) if ( ( G.arcs[v][w] != 0 ) && ( !visited[w] ) ) DFS ( G, w ); }
voidDFSTraverse( MGraph G )// 对图 G 进行深度优先遍历 { int v; for ( v = 0; v < G.vexnum; ++v ) visited[v] = 0; for ( v = 0; v < G.vexnum; ++v ) if ( !visited[v] ) DFS ( G, v ); }
voidBFSTraverse( MGraph G )//对图 G 进行广度优先遍历 { SqQueue Q; int v, u, w; for ( v = 0; v < G.vexnum; ++v ) visited[v] = false; InitQueue ( Q );
for ( v = 0; v < G.vexnum; ++v ) { if ( !visited[v] ) { visited[v] = true; cout << G.vexs[v] << " "; EnQueue ( Q, v ); while ( !QueueEmpty ( Q ) ) { DeQueue ( Q, u ); for ( w = FirstAdjVex ( G, u ); w >= 0; w = NextAdjVex ( G, u, 1 ) ) { if ( !visited[w] ) { visited[w] = true; cout << G.vexs[w] << " "; EnQueue ( Q, w ); } } } } } } intmain( void ) { MGraph G; int c = 0; while ( c != 5 ) { cout << endl << "1. 采用邻接矩阵表示法,构造无向网G"; cout << endl << "2. 显示图G的邻接矩阵,即按行列输出二维数组"; cout << endl << "3. 对图G进行深度优先遍历"; cout << endl << "4. 对图G进行广度优先遍历"; cout << endl << "0. 退出"; cout << endl << "请输入您的选择:"; cin >> c; switch ( c ) { case1: CreateUDN ( G ); break; case2: Display ( G ); break; case3: DFSTraverse ( G ); break; case4: BFSTraverse ( G ); break; case0: exit(0); } } }